Linear‐Time Korean Morphological Analysis Using an Action‐based Local Monotonic Attention Mechanism
نویسندگان
چکیده
منابع مشابه
Local Monotonic Attention Mechanism for End-to-End Speech Recognition
Recently, encoder-decoder neural networks have shown impressive performance on many sequence-related tasks. The architecture commonly uses an attentional mechanism which allows the model to learn alignments between the source and the target sequence. Most attentional mechanisms used today is based on a global attention property which requires a computation of a weighted summarization of the who...
متن کاملMorphological Inflection Generation with Hard Monotonic Attention
We present a neural model for morphological inflection generation which employs a hard attention mechanism, inspired by the nearly-monotonic alignment commonly found between the characters in a word and the characters in its inflection. We evaluate the model on three previously studied morphological inflection generation datasets and show that it provides state of the art results in various set...
متن کاملLocal Monotonic Attention Mechanism for End-to-End Speech And Language Processing
Recently, encoder-decoder neural networks have shown impressive performance on many sequence-related tasks. The architecture commonly uses an attentional mechanism which allows the model to learn alignments between the source and the target sequence. Most attentional mechanisms used today is based on a global attention property which requires a computation of a weighted summarization of the who...
متن کاملHard Monotonic Attention
We present a supervised sequence to sequence transduction model with a hard attention mechanism which combines the more traditional statistical alignment methods with the power of recurrent neural networks. We evaluate the model on the task of morphological inflection generation and show that it provides state of the art results in various setups compared to the previous neural and non-neural a...
متن کاملMonotonic Chunkwise Attention
Sequence-to-sequence models with soft attention have been successfully applied to a wide variety of problems, but their decoding process incurs a quadratic time and space cost and is inapplicable to real-time sequence transduction. To address these issues, we propose Monotonic Chunkwise Attention (MoChA), which adaptively splits the input sequence into small chunks over which soft attention is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ETRI Journal
سال: 2019
ISSN: 1225-6463,2233-7326
DOI: 10.4218/etrij.2018-0456